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Summary

This computational study is an exploration of
nonreacting high-speed mixing layers. The compu-
tations are made with a code based on an accurate

higher order algorithm and with sufficient grid points
to resolve all relevant scales. In each case, the free-

stream disturbance is introduced, and the calcula-

tions are run until a statistical steady state is reached

(2 or 3 sweeps, based on axial distance and convec-
tive speed). Then, 400 to 600 time samples of the

flow, at equal time intervals, are generated to obtain

statistical properties of the flow.

The studies are conducted at two convective Mach

numbers, three free-stream turbulence intensities,

three Reynolds numbers, and two types of initial

profiles hyperbolic tangent (tanh) and boundary

layer. These profiles are used to interpret the effects

of corresponding parameters.

The boundary-layer profile leads to predictions of

transition processes much better than the tanh pro-
file at disturbance intensities comparable to those in

wind tunnels. The transition Reynolds number pre-
dicted is about 0.18 × 106 and compares well with

experimental data. The spacing between the vorti-
cal structure normalized by the boundary-layer tifick-

ness is about 3.5 (boundary-layer case) and 10 (tanh

case), whereas the observed values range from 1.5

to 2.5. The deduction of the growth-rate data from

the plots of growth versus the streamwise coordinate

is, in part, affected by the nature of free-stream dis-
turbance introduced and the regions of slight nega-

tive growth. Nevertheless, careful extraction of the

growth-rate information and comparison with the
experimental data of Papamoschou show that this

comparison is moderately good. The study of the
location of the disturbance shows that the growth

of the layer is suppressed if the shear-layer region
is excluded from the disturbance field. Calculations

with the boundary-layer case with no imposed distur-

bance show that the shear layer selectively amplifies

the noise at a Strouhal number (based on momen-

tum thickness) of 0.007. This result can be used in

practice to excite the shear layer toward early tran-
sition. Studies of dependence on Reynolds number

show that the effects are negligible, and this may be

caused by the dominant inviscid structure of the flow
field.

Introduction

High-speed mixing layers have received significant

attention in the past 5 years because of the poten-

tial applications in hypersonic plane scramjet com-
bustors, where the combustion process is supersonic.

Recent experimental results (ref. 1) indicate that the

growth rates of high-speed layers in relation to those

of incompressible shear layers arc much smaller by
a factor of 4 to 5. This reduction implies that much

longer lengths are needed to achieve the same level of

nfixing and combustion efficiency. This longer length

is obviously undesirable from a technological point of

view. Consequently, considerable attention is being

paid to the mixing phenomenon in supersonic mixing

layers both nonreacting and chemically reacting.

Studies of stability of mixing layers (refs. 2

and 3) and direct simulation of temporally and spa-

tially developing mixing layers (refs. 4 and 5) are

the theoretical and computational approaches made

to understanding the behavior of the mixing layers.

Experimental studies of the high-speed mixing layers
are difficult, and there are not many such studies.

These mixing layers have not been sufficiently ex-

plored for the distribution of mean and fluctuating

quantities with nonintrusive diagnostic tools. The

only reliable sources of information available are the

growth rates measured from pitot traverses, Schlieren
pictures, and mean velocity measurements. Some ef-

forts at modeling the mixing process have been made,

but a more precise understanding of the flow must be

obtained before the modeling efforts are considered
valid.

In light of this scenario, direct numerical simula-
tion of the shear layers becomes an important tool

for understanding the mixing process. The classical

question of resolution of scales at high Reynolds num-
bers limits the exploration to relatively low Reynolds

numbers (_1 x l04) based on shear-layer thickness

and mean velocity at the inflow plane). But this

range is not nmch below the range of practical rel-

evance or importance. Thus, it should be possible

to perform these calculations and to make deduc-
tions of relevance and some importance to the be-

havior of mixing layers. Initially, studies will be
limited to two-dimensional simulations. While there

is the capability to make three-dimensional simula-
tions, it is important to understand two-dimensional

simulations before embarking on three-dimensional

calculations. In recent times, a few groups (refs. 4

and 6) have made direct numerical simulations of

shear layers, and much has been uncovered. The

present contribution is complementary in some as-
pects and presents new results on many aspects.
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Previous Studies

Experimental

Table 1 contains a list of references and some

brief details of the experimental work discussed in
them. This table has been constructed to determine

which experiments can be used for comparison with
the results of the simulation. Figure 1 shows the

experimental design used by these authors to obtain
their results.

Reference 7 is a critical summary of the data of

many early studies on both subsonic and supersonic
shear layers. The data of references 8 and 9 and their

nondimensional growth rate as a function of Mach

number are important. The growth rate is normal-

ized by that under incompressible conditions. It is

apparent from reference 10 that the incompressible
mixing-layer growth rate is uncertain to a significant

extent (a factor of 1.8). Therefore, the quality of

the results of nondimensional growth rate versus M

is not assured, even though the primary result that
mixing-layer growth rate decreases with convective

Maeh number M,: is unquestioned.

Experiments have been conducted on mixing lay-

ers (ref. 11) by using a splitter-plate configuration

(fig. l(a)). Measurements of mean velocity profile
and transition have been made for two configurations

at Mc = 0.325 and 0.515 (table 1), and tile pressures

across the mixing layer are not the same. In one
case, they are different by a factor of 1.3. Transi-

tion is measured in the following ways: (1) point of

change in slope of the plot of growth versus distance,

(2) examination of Schlieren pictures, and (3) point
of decay of the spectral intensity of the dominant

frequencies in the free shear layer as measured by

a hot-film probe. The transition locations, as mea-

sured by these criteria, are not necessarily the same
they vary by about 35 to 45 mm. The transition

distance normalized by initial momentum thickness

is about 165 to 3000, depending on the flow condi-

tions and the transition Reynolds number based on
mean properties (and mean velocity), which is about
2.0 x 10 5 :t: 0.3 x 105 .

The experiments of reference 12 are instructive in

inany ways. Though the study is limited to a Sill-

gle speed and the geometry used is not pertinent to
the two-stream mixing considered here, it gives an

appreciation of the free-stream turbulence and the

peak turbulence intensity inside the shear layer. The

measured free-stream turbulence is about 0.2 percent

for velocity fluctuations and 0.1 percent for pressure
fluctuations. The peak turbulence intensity increases

to 6 percent in the downstream region of the shear

layer. This study also presents the velocity spectra



that canbeusedfor detailedcomparison.Theappa-
ratususedby thesespectrais shownin figurel(c).
Theinjectionfromthebottomwallhelpsbalancethe
pressureacrosstheshearlayer.

Papamoschou'swork(refs.1and13to 15) is by
far the most referenced work, essentially because of

a systematic effort to evolve appropriate parameters
for compressibility effects and to determine the ef-

fect of compressibility on mixing (growth rate of the

mixing layer). There were previous studies (both ex-
perimental and linear stability) on the subject, but

the status of understanding was not consolidated un-

til his work clarified issues and reinforced the impli-

cations of previous work on stability (ref. 2). The
principal result he obtained was the variation of the

nondimensional growth rate with convective Math

number. Following the work of Roshko and others,

the dynamics of the mixing layer is argued to be af-

fected by the speed of large-scale structures relative
to the speed of one of the streams. The ratio of this

speed to the average acoustic speed is the convec-

tive Maeh number Me. The growth rate normalized

by that for incompressible conditions decreases by
a factor of about 4 to 5 when Mc increases to 2.

In these experiments, Papamoschou used nitrogen,
argon, and helium as test gases in a splitter-plate

configuration (fig. l(b)). Understandably, the test

durations were short, typically 1 to 2 see, and the

measurements consisted of pitot surveys across the

mixing layer. The free-stream turbulence effects arc
only indirectly inferred from wall pressure measure-

ments. One of the other details measured, but not

published, is the difference in the static pressure of

the two streams. This difference may well be small,

but it adds to the wave processes and, in a disturbed
enviromnent, may affect transition.

Some preliminary measurements of a shear layer
of a single fluid with two streams across a splitter

plate are reported in reference 16. A single measure-

ment of growth rate and velocity profile has been

reported, as well as a mean turbulence velocity of
5 percent in the mixing layer. Reference 16 also in-

dicates from the measurement of laser doppler ve-

locimetry (LDV) that the wave reflections from the

walls can cause fluctuations of flow velocities as high

as 4 percent.

Some experiments of supersonic shear layer have

been presented in reference 17. In this setup, the

shear layer begins from a backward-facing step, and
the flow structure in the downstream zone is altered

by inserting a ramp (fig. l(d)). The ramp provides

a recirculation zone at near-zero speeds and helps to

maintain a smooth shear layer. The growth rates

from these experiments, with the incoming stream

deliberately made turbulent, are plotted along with

the previous data to reinstate the conclusion regard-
ing the reduced growth rate at supersonic conditions

(in terms of Me). Transition experiments have been
conducted recently on a similar setup (ref. 18), but

the test section was made disturbance free to a large

extent. Measurements of transition Reynolds num-
ber show values from 3.63 x 105 to 5.3 x 105.

It is clear from the preceding discussion that

(1) the various experimenters have used different ap-
paratus for creating a mixing layer, (2) the measure-

ments of the quality of the incoming stream are not

complete in most cases, and (3) the mixing layers are

subject to disturbance, acoustic and otherwise, at a

magnitude upward of 0.2 percent, and a pressure dif-
ferential across the layer of 1 to 1.3 in some instances.

Yet, the growth rates of the layer from the work of

most investigators, possibly in the turbulent range,

are put on the same plot, and evidence of these be-

ing nearly the same qualitatively and quantitatively

is presented (ref. 13). If these are true, then the
asymptotic growth rate is relatively independent of
tunnel characteristics and the disturbance environ-

ment. This aspect needs confirmation through sys-

tematic experimental study in which the incoming

disturbance field is measured along with the features

related to growth rate.

Computational

The efforts to model the flow, particularly to ex-
plain the reduced growth rate, are recent. These

efforts have been related to stability, direct sim-

ulation, and a correlation of both. References 3

and 5 show that, at high speeds, the peak ampli-
tudes of the unstable waves decrease with increas-

ing M_.. Also, at high values of Me, the three-

dimensional oblique disturbances tend to grow more
than the two-dirnensional waves. This reduced am-

plification of the disturbances may be responsible for
the delayed growth (in terms of distance from the

edge of the splitter plate) and, in general, the inabil-

ity of the flow to sustain the growth of disturbances.

Direct simulation of mixing layers has been con-

ducted in reference 6 for supersonic mixing layers
and in reference 19 for incompressible mixing lay-

ers. A high-order finite-difference scheme is coupled

with fine-resolution grids to capture the important

scales of the transport within the mixing layer in ref-

erence 6. The computations are aimed at establishing

the importance of Mc and elucidating the causes for
reduced mixing at high Mach numbers. The com-

putations use tanh profiles and sufficiently large dis-

turbances on the cross-stream velocity at the inflow

station. The inflow disturbance magnitude is as high

3



as 5 percent. While someconclusionsarenot af-
fectedby this unnaturallylarge forcing, others are.

For instance, the mixing-layer thickness versus axial

distance shows a linear growth that tends, asymptot-

ically, to zero growth. This result has no parallel in
reality and is left unexplained. It is concluded from

the present simulation, as well as from reference 19,

that this result could be one of the effects of forcing.

The results for large Mach numbers indicate the

presence of thin shocks called eddy shocklets. The re-

duced mixing at high Mach numbers has been related

to the change in balance of terms involving baroclinic

and compressibility terms in the velocity equation.
Arguments of this nature were made in tile temporal

simulations of reference 20; these arguments indicate

that baroclinic torque resulting from compressibility

causes distribution of vorticity; the diffusion of the

vorticity over a wider region results in weaker vortex
roll-up and slower growth.

Reference 19 contains numerical simulations on

incompressible mixing layers. The spread rate has

nonmonotonic behavior with distance for specific
cases, and this is related to the phase relationships

between forcing and the pairing processes. This

behavior is also related to the change in sign of

the Reynolds number stress. Specifically, in regions

where the spread rate decreases or remains nearly
constant with distance, the energy is transferred from

large-scale structures to the mean flow.

Reference 10, a review of free shear-layer mixing,

addresses several relevant issues. Many aspects of

this paper are for subsonic flows. The incompressible
shear-layer growth rate is expressed as

1-r

where ct_ is a constant, possibly independent of veloc-
ity ratio r and/or the density ratio s. Based on cu-

mulative experimental evidence, it is conchlded that

c_ varies between 0.25 and 0.45. The large difference
is still unaccounted for. Experimental evidence from

incompressible flows is presented to indicate that the

growth rate is a strong function of Reynolds number

in a mixing layer.

The growth-rate dependence on Reynolds num-

ber seems to be a subject of some controversy.
Papamoschou discusses this question in reference 13;

he does not take a firm position, but indicates that

he ignores the effect of Reynolds number. The reason

that the large dependence on Reynolds number ap-

pears difficult to accept is that the mixing-layer phe-

nomenon, particularly in the early part, is largely

inviscid. Hence, one would expect weak Reynolds
number dependence at best.

The present work addresses the question of

Reynolds number dependence by changing the

Reynolds number through alterations of pressure
rather than velocity. This approach has been dis-

cussed by Dimotakis (ref. 10), and it is one of the
cleanest ways of changing the Reynolds number with-

out altering other aspects of the flow. For example,

changes of velocity also alter the initial boundary-
layer profiles and have influences which have not been
evaluated until now. One of the aims of this work is

to treat this aspect as well.

Outline of Present Work

The present work is a direct simulation of mixing

layers with different reactive fluids in the two adjoin-

ing streams. They are chosen so as to fornl a set for
reactive studies as well. The first part of the work

discusses the methodology for analyzing and inter-

preting the results of computation. The questions

concerning grid resolution and boundary effects are
discussed subsequently. The results of effects of free-

stream disturbance on the growth of the shear layer

at two different values of Mc are then brought out;
both tanh and boundary layer, like initial profiles,

are discussed. The various aspects--growth rates of

vorticity, velocity, mass fraction, and density; vor-

ticity plots and variation of turbulence quantities
through the flow fieht; and time and space spectra

of the fluctuations are examined to obtain insight

into the behavior of the mixing layer. The cases con-

sidered in the present work are shown in table 2.
The choice of the two cases is aimed at making cal-

culations, one at low Mc and another at a relatively

high value. For the two eases considered, l_Ic = 0.38

and 0.76. A fuel and oxidizer system was chosen in-

stead of single fluid system to enable computations
with reaction as well (not reported herein). The tem-

perature of both streams is held the same, so as not

to additionally introduce a parameter through tem-
perature. The temperature for the present test is

2000 K, as it is representative of inflow conditions

in a supersonic combustor of a hypersonic cruise ve-

hicle. Table 2 shows that the specific-heat ratio 7
is nearly the same for both streams, _ = 1.0133.

Yair

This similarity is because of the high temperature of
the stream and because the molecules involved are
diatomic in nature.

The inflow-plane pressure is the same on both

sides of the mixing layer at 0.101325 MPa (1 atm).

Changes in Reynolds number are nmde by changing

the pressure above and below the nominal value by a
factor of 2. The convective properties are calculated
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and

Me= (Mv-M sV ps pJ (2)

Ve = ,/ Up +

These are the definitions presented in reference 14.
They use the geometric average of the values of Me

on the primary p and seeondary s sides. The primary

side is defined as the one with the higher Math

number, no matter what the speed. In equation (2),

7 has little impact. If we ignore the 7 terms, then

equation (2) reduces to

Mc = x/' MP - x/ Ms (4)
+

As discussed previously, Papamoschou's definition of

3,I_ (ref. 13) is

- Up - Us (5)
ap + as

Equation (2) reduces to the above result if we recog-

nize that a = v_P_, and p and _, are the same for

the two streams. The initial profiles are chosen as a

tanh profile as follows:

1

Um= _ [(Uoc + U-a) + (U_ - U-_c) tanh ky] (6)

The constant k is chosen as 1800 m -I, so that

the effective boundary-layer thickness, based on a
99-percent free-stream velocity criterion, is about

2 ram. For other numerical experiments, boundary-

layer profiles are given by

Urn = Uec [1 - exp (-kly)] (y > ym/2) (7)

and

Um= U-_ [1 - exp (-kly)] (y <_ ym/2) (8)

The constant k 1 is chosen as 4000 m -1. The effective

boundary-layer thickness on each side is about 1 mm.

This profile is intended to simulate the normally

obtained experimental conditions.

Table 3 shows the nondimensional parameters
relevant to the cases considered. Several instructive
features can be derived from tables 2 and 3. The

velocity of the airstream is lower than that of the fuel

for Mc = 0.38, but is much higher for Me = 0.76. The

momentum ratios shown in table 3 indicate that the

momenta are balanced for Mc = 0.38 but are greatly

in favor of the airstream for Mc = 0.76. The shear

layer therefore remains roughly in alignment with the

central axis in the first case, but bends over toward

the fuel side in the second case. The implications

for the computations are that the grid has to be

well resolved, even in the outer regions, if the details
are to be captured in the second case, or a twisted

stretched grid must be used. In fact, this problem

can be so serious that reactive flow computations do

give considerable difficulty in the second case unless

one of these strategies is adopted.

The second part of the work concerns the layer

thicknesses. The thicknesses, based on 99-percent

free-stream velocity, are about 1 mm on each side

of the splitter plate. The momentum defect thick-

nesses 0 for the tanh and boundary-layer profiles are

very different from each other. In the tanh case, it is
about 1.54 ram, and in the boundary-layer case, it is

about 0.102 mm. This large difference implies that

for the same streamwise grid length (e.g., 100 ram),

only about 64 momentum thicknesses can be cov-

ered with the tanh profile, but about 1000 momen-
tum thicknesses can be covered with the boundary-

layer profile. For small free-stream disturbance levels

consistent with experiments, no transition should be

expected for the tanh case, but significant transition

should be expected for the boundary-layer case. This
situation can be altered if a free-stream condition of

high turbulence intensity is imposed. If the transi-

tion is caused early enough, the asymptotic growth

rate from this calculation would be representative

of turbulent boundary-layer growth. The Reynolds
number based on boundary-layer thickness is about
3.5 x 103 to 1.2 x 104 for the two Mach number cases.

Based on the convective speed, momentum thickness,
average density, and viscosity, then R = 360 to 550.

If the reference speed is changed to the difference

in speeds between the two streams, then R = 250

to 400. This last quantity is brought out because the
difference in velocities is used by some workers for

normalization purposes (ref. 6). These values are low

enough that the direct simulation approach with the
current-day computational aids is expected to lead
to realistic results.

For disturbances to be introduced with the inflow

profiles, several numerical experiments have been
conducted. The disturbance function is chosen as

3

Ud = (U_c - U-oc) E ci sin_oit
i=1

(9)
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Vd = (Ucc - U-oc) _ di sin wit (10)
i=l

The velocity variation with y at x = 0 is then given

by u = um+ Ud an(t v = v d. In most cases,

c2 = c3 = 0, w'l = 100kHz, Cl = 0.04. dl =0.04,

d2 = 0.02, d 3 = 0.01, "_2 = 200 kHz, and
"_3 = 300 kHz.

In a few prelinfinary runs made with no inflow dis-

turbance, the layer grew very little to about 100 ram.

There was only a trace of growth toward the end.

The time-sampled data at this plane were subjected

to spectral analysis, and the frequencies, with rel-
atively large amplitudes, were chosen and used in

equations (9) and (10). The choice of the amplitudes

is arbitrary and is made to ensure that the rms val-

ues of the fluctuations are of a required magnitude.

The above disturbances (u_t, Vd) are introduced ei-
ther into a specific region of about 4 mm or over

the entire region. In some experiments, the distur-

bances are restricted to the fuel or oxidizer region
only. These calculations were performed to observe

the sensitivity of the mixing layer to the location of
the disturbances.

Code and Algorithms

The code used in the present calculations is the

SPARK combustion code developed at Langley Re-

search Center over the past 4 years. It. solves

the Navier-Stokes equations, including energy and
species conservation. The models chosen to eval-

uate viscosity, thermal conduction, and mass diffu-

sion allow for a mixture of perfect gases. In the first

version, the code used a second-order spatially arid
temporally accurate, two-step explicit MacCormack

scheme. (See ref. 21.) Subsequently, it has been mod-

ified to include a variety of higher order spatial al-

gorithms, including linear and compact algorithms

(fourth and sixth order) and various upwind algo-
rithms (third and fifth order). A brief description of

the algorithms is provided in the appendix. Based
on the supersonic streamwise characteristics of the

mixing layer, a third-order, upwind-biased algorithm
is used for the streamwise direction. A fourth-order,

central-difference algorithm (ref. 22) is used in the

cross-stream direction. The temporal accuracy is still

second order. This choice represents a compromise
between the accuracy of higher order numerical al-

gorithms and the robustness and efficiency of lower
order methods.

Boundary Conditions

The problem is cast in the x-y coordinates, such

that the flow is oriented along the x-axis. The two

streams extend from y = 0 to ym/2 and ym/2 to
Ym, where Ym is the maximum extent of y. In the

streamwise directions, the boundary conditions at

x = 0 are the set values of u, v, p, T, and fi,

since the inflow is supersonic. The fluctuations, when

introduced, are only in u and v. In a few experiments,

fluctuations in p are also set. At the supersonic
outflow plane x = xm, first-order extrapolation of
the primitive variables is used.

At y = 0 and Ym, the gradient 0(property)Oy = 0 is
set. To ensure that the boundaries are far enough

for this condition to be valid, the outer regions

are chosen as 15 times the initial boundary-layer
thickness. Therefore, Ym = 30 ram. A few numerical

studies have been conducted with Ym = 50 nlIn. In
one case at Mc = 0.76, doubts were raised as to

whether the results were affected by the boundary.
In this case, the boundary line is set at Ym = 100 mm.

In all cases, the results obtained at Yrn = 30 mm were

reproducible and, to this extent, seem satisfactory.

Choice of Grids

It is intended that most scales of importance be
captured in the calculations. Numerical resolution of

the large-scale vortical structures presents no prob-

lem. However, the relatively fine scales at which dis-

sipation through viscosity occurs need fine grids for
capture. The Kolmogorov scale, which describes the

fine scales, is related to the large scale (integral scale)
as follows:

fl 3
=Cn-_ (11)

where R is the Reynolds number based on a charac-

teristic thickness. The Reynolds number of the flow
with the initial boundary-layer thickness as the rele-
vant scale varies from 3.5 x 103 to 1.2 x 104 for the

problems treated. In the downstream region, where

the shear-layer thickness is larger, Reynolds number
goes up to 1.5 x 104 . The constant Cis to be es-

timated. The balance of dissipation and production
is used in reference 23 to estimate the constant as

typically 2.5 for incompressible flows. Recognizing
the fact that in compressible flows the disturbances

tend to have much lower growth rates typically 2
to 3 times smaller than in incompressible flows--and

that the asymptotic structure retains this effect, the

constant is between 5 and 7. For a typical extent
of growth estimatcd from known dat_5 = 10 mm

and R = 1.0 x 104 7] = 0.056 mm. The smallest

size of the computational domain is 0.025 mm. The

stretching of the grid makes the grid size increase
to 0.4 mm at a distance of 10 mm from the central
line. This increase does not ensure that all the scales

will be captured, as calculated in reference 17, but it

6



doesensurethat mostscalesof importancearecap-
tured.Sincethis is animportantissue,thejustifica-
tion for the choiceof tile stepsizeis not limitedto
thisargument.Thespectraobtainedfromtwodiffer-
ent finegridsarecomparedto providethenecessary
justification.

Thenumberof gridpointsusedin the y direction

varies from 101 to 176. Many results obtained here

are for 151 grid points over a, region of 30 mm. A

grid compression factor of 10.0 allows tile region of

10 mm to be covered with about 95 grid points.
The z direction is typically embedded with (L5-mm

equispaced grids. Some mnnerical experiments with

a grid-point spacing of 0.25 mm were also obtained

to ensure that the results are grid-independent for

a large number of fluctuating parmneters that are
examined. The total number of grid points is 201,

251, or 301, depending on tile region examined 50,

100, or 125 ram, respectively. In one cease, a 200-ram

region was treated, because tile growth of vortical

structures was virtually absent up to 125 nun. The

minimum step size chosen should, again, be able to
capture the scales. The vortical scales in the axial

direction are 3(5 to 4_. These scales are covered by

60 to 80 points, which is good in most eases where
the flow is in the transitioning stage, but marginal in

tile boundary-layer case in a zone where turbulence

has set in significantly.

Methodology and Tools of Examination

It is important to understand the flow behavior in

each of the cases coinputed. Since there is a variation

of the flow behavior in both space and time, there

is a need to analyze both. The spatial variation

is understood largely by contour plots of vorticity,
pressure, and fuel mass fraction. The presence of

shocks is best understood in terms of a quantity

called the "shock flmction based on pressure." Other

plots, including tile v velocity the divergence of

velocity--arc usually less revealing with regard to
the presence of sharp changes of pressure in the

flow. However, this presentation is restricted to the

contour plots of pressure.

The speed of vortical structures (expected to be

near the convective speed) is obtained from pressure
versus x plots at some value of y near the center.

These plots are made at a few times that are suffi-

ciently spaced apart. The rate of movement of the

point of peak pressure along the z-axis is the convec-
tive speed.

To determine a statistical time behavior, it is nec-
essary to time sample the flow, preferably at equal
time intervals. The SPARK2D code calculates the

time step based on a nmnerical stability criterion

(CFL). It varies significantly in the early part of the
calculation [)tit settles down to a value with a fluc-

tuation of about 5 percent. To take these features
into account and the fact that the flow inust attain a

statistical steady state before sanlpling is perfornied,
the c,ode is run for each case for a duration of about

three convecti ve su'(_ps of the flow. Each .sweep takes

a time given by xm/Uc; this is about 50 msee fl)r the
M,: = 0.38 case and 30 msec for the M(. = 0.76 case.

The time step is typically 0.005 psec: therefore, it.

takes 20000 to 30000 time steps t)efl)re statistical

steady state is achieved. A total of 400 to 600 time

samples of the flow field involving p, u, _, T. p, f i,

anti vorticity, in the most important y region and

at. specific :r stations, are store(t at equal time inter-
vals. These samples are subsequently analyzed t)y

a separate statistical package st)ecifically (teveloped

for this purpose. The results fronl this package in-

clude several quantities: the mean and root mean

square of fluctuations of all tile paranmters, lieynol(ts

stress and other correlations of velocity with ten>
perature, mass fractions and pressure, average thick-

ness estimated by wirious means, probability density

function of the passive sealer (mass fl'action of H2)

and other parameters as needed, time spectra, anti

x spectra (wave-mmfl)er plot) for the w_riables de-

sired. The intention was to ot)tain the st)eetra in the
y direction, but this objeetive was impede(t t).,,; the

prot)lem of calculating the error-free integrals of the

variables known at specific t)oints (mmqua] interva.ls

in y) with harmonic flmetions. These calculations

produced a significant amount of high-frequency
noise, even though a simple quadrature rule was used.

The x spectra ot)tained fronl data of equal intervals

were sufficient to (h'aw inferences. The shear-layer

thickness was obtained for u, vorticity, density, anti

H 2 mass fraction. Of these, only v()rticity tends to
zero at y ---* :t:_c,, and the others tend to nonzero
finite values. Therefore. the thicknesses are defined

t)y

(U_ U__)

6, = (d,,..e,mldY),..,, x (12)

with similar definitions for density and mass fraction

of H2, with tile velocity u replaced by the correspond-

ing quantities. For vorticity thickness, the definition

is given by

JL% d. j
_max

where f_ is vorticity.

Defining _ as in equations (12) and (13) turned
out to be reasonable for several cases. However, in

the case of the boundary layer and in some cases of
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tanhprofile,theprecedingdefinitionsgavewhatap-
p(,aredto beinconsistentresults.In thetransitional
regime(aregimewherethevorticalstructuresbegin
to interactandleadtootherstructuresofsmallerand
largersizes),thedevelopmentoftheprofileswassuch
that the peakgradientsof meanquantitiesdid not
possessa monotonicallydecreasingtrend. A small
kink in theprofile,ascanbeseeninsomeoftheplots
ofmeanquantitiesdescribedsubsequently,upsetthe
monotonicityof thegradients.As such,a spurious
decreaseof the growthof the layerwasindicated,
eventhoughanexaminationof tile plotof themean
profiledidnotshowsuchabehavior.Forthisreason,
athicknessbasedona 98.5-percentfree-streamvalue
wasobtainedandpresented.

Results and Discussion

Hyperbolic-Tangent Profile
Figure2 showsa typical result of a structure

superimposedon thegrid andthegriddistribution.
Themaximumsizeof theverticalstructureisabout
l0 ram,theminimumgrid sizeis 0.025ram,andthe
gridsizeat theouteredgeofthestructureis0.4ram.

Figure3 containsthe plotsof growthrateswith
axialdistanceforthenonfinalcase(Me= 0.38)along
with a finery grid and a finer x grid. All the cases

are for a region 100 mm (in x) by 30 mm (in y). The

nominal ease is for 201 by 101 grid points. The finer

y-grid case has 151 grid points. The finer x-grid case
ha.s 301 grid points. The growth rates are obtained

by averaging 250 time samples. The differences in

the. results of figure 3 are the results of averaging and
predictions of grid resolution at the levels employed
for the nominal case.

Figure 4 contains similar plots to examine the

influence of the boundary. The y region of 30 mm

is extended to 50 mm. Again, the differences seen

are simply the result of statistical averaging, and
the boundary of y = 30 mm should be satisfactory.

The question of the outer y boundary being kept at

ym = 30 mm (15 mm away from the center of the
shear layer) becomes more serious for the Me = 0.76

case, because, in this ease, the changes in pressure

are much larger than in the Me = 0.38 case, and

boundary effects on the radiation of these pressure

waves could be more significant.

Figure 5 contains the contour plots of vorticity

and pressure for the small domain (Ym = 30 mm

with the mixing layer centered at 15 ram) and the ex-
tended domain (Ym = 100 mm with the mixing layer

centered at 50 mm). These plots use the same scale

and same range of vorticity at about the same time,

though not identical. The fact that the vorticity plots
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look identical may be misleading. Also, the fact that

the pressure plots retain nearly identical behavior is

a better indication that the outer-boundary set at

Ym = 30 mm is reasonable. Other data involving
means and fluctuations in the central 10 mm region

show differences less than 3 percent not very much

larger than errors of statistical averaging, which are

about 2 percent. The verification of grid resolution
and boundary effect based on growth rates, means

of flow variables, and contour plots of pressure was

thought to be more complete with the examination

of time and wave spectra.

Figures 6 and 7 refer to time and space spectra
for u and v shown at the initial and final stations.

The plot at the initial station shows the frequencies

used to excite the layer in u and v. The spectrum

approaches a function with a sharper peak by us-
ing a larger number of samples. The differences in

spectra seen in other cases are the usual statistical

differences. The spectra show more than a two-order

range of frequencies from about 12 kHz to 1.5 MHz.
The peak energy containing eddies have a frequency

between 40 and 100 kHz. The quantity shown as

amp is the root of kinetic energy of u fluctuations
in the specific frequency range. The dominance of

the initial disturbance at a frequency of 100 kHz is

seen 50 mm downstream, but generation of both sub-

harmonic and higher harmonic frequencies is taking
place. At 100 mm downstream (608), the amplitude
of the initial disturbance has come down from 100

to about 50 m/see, and the other lower frequencies

have increased in amplitude substantially (i.e., from

about 5 m/sec to as much as 20 to 50 m/see). Also,
the higher frequency spectrum is populated.

Figure 8 contains the velocity-vector plots, con-
tours of vorticity, and pressure and mass fraction of

H2 for the tanh profile case at M_ = 0.38. These

results are included to illustrate the relationship be-

tween various quantities. The mass fraction of hy-
drogen follows the vorticity plot, which shows that

mixing is related to the vortical structures. The pres-

sure plot shows that the pressure is lowest near the
center of the vortical structures and peaks between
the structures.

The influence of intensity of fluctuations on the

growth of vortical structures is shown in figure 9.
With no inflow disturbances, the growth is negligible.

The viscous entrainment in the laminar range is,

indeed, extremely low. With an increased level of

disturbances at 0.92, 1.84, and 3.68 percent (rms
value), the instability begins at smaller distances,

and the growth of vortical structures is stronger.

If the growth of the structures was associated with

the transition process, then it could be inferred that



the processhasoccurredat about80to 90mm at
0.9percentrmsdisturbance.Forrealistictransition
distancesoftheorderof 40to 50mm,theintensityof
fluctuationneededisof theorderof 3 percent.This
is very largecomparedwith thekind of free-stream
disturbancesexpectedin windtunnelsor freeflight.
This featureis stronglyrelatedto the natureof tile
initial profile.

Figures10and11containthecorrespondingplots
for Mc = 0.76. These plots are included for compari-
son with those for Mc = 0.38. The growth rate of the

vortical structures for 3.6 percent fluctuation seems

as large as for the Mc = 0.38 case.

Figure 12 shows tile effect of the location of the

disturbance on the growth of the shear layer. Dis-
turbances in the free stream away from the shear

layer seem to have little influence on the growth of
the layer. Inclusion of the shear layer into the dis-
turbance field makes all the difference, as seen from

the third and fourth plots. Though a careflfl exam-
ination of these plots shows that the disturbance in

the air side (lower) leads to slightly larger structures,
a generalization is not possible with the limited re-
sults available. Disturbances set around a region

that does not include the shear layer are not suffi-
cient to realize the effects of tile disturbance field.

It is necessary to include the shear layer and a re-

gion of about four times the layer thickness to obtain
the full effect of the disturbances. This result may

have important practical implications in terms of

mixing-enhancement techniques. To explicitly state
the result, the introduction of disturbances around

the shear layer in a frequency range anywhere from

50 to 150 kHz should be able to cause significant

enhancement of mixing. The frequency range pre-
scribed here has been obtained after a study of a

wider range of parameters than discussed herein.

Figure 13 shows the mean profiles of u versus

y as a function of axial distance for Mc = 0.38.
The growth of the layer is shown by the dotted

lines. The distinct change of growth rates with
distance is noticeable. Since the first part of tile

growth is laminar, a similarity plot on the basis
of u versus y/x/7 is presented in figure 14. The

laminar similarity seems to be well obeyed for this

range. A plot containing data up to 100 mm showed
that no laminar similarity exists in the latter portion

(not shown here). The turbulent flow similarity is
on a basis of u versus (y-y0)/(x-x0). In this

coordinate, Y0 is the center of the mixing layer and

x0 is the virtual origin. The value of x0 is not known

a priori. Figure 13 shows that the virtual origin x0
lies at approximately 0.015 m. Collapsing the data in

terms of this similarity variable is shown in figure 15.

Determination of convective speed is based on tile

speed of tile structures. The movement of the vorti-
cal structures also causes a movement of the pressure

versus z profiles. The plots of p versus z at a spe-
cific 9 station for Mc = 0.38 and 0.76 arc shown in

figures 16 and 17. Even at M,. = 0.38, the changes

of pressure are, by no means, insignificant; they vary
between 0.07 and 0.14 MPa. For Mc = 0.76, tile pres-

sure variation is between 0.045 and 0.17 MPa. Tile

free-stream pressure is 0.101325 MPa; therefore, the

pressure variation over the free-stream value is signif-
icant. The flow has shocks and regions of expansion.

One of the interesting Datures of the flow is that the

regions of shocks occur between structures and over

them. The flow pattern seen here is different from
those observed in reference 6 for air at comparable

values of Me. The shapes of tile pressure a" plots
seem to be the same at various times, certainly at

the times shown in figure 16. On the other hand, the

shape of the pressure variation for ilia, = 0.76, shown

in figure 17, does not remain the same, and there
are serious distortions in the shapes for much shorter

times than the sweep time. Convective speeds ob-
tained from the structures based on a procedure de-

scribed previously are presented in table 4, and the
results from the standard fornmla are also shown.

There seems to be a difference of 100 m/see in the

first tanh case. where A.I,, = 0.38. There is a much

smaller difference in the boundary-layer case; it may

be good enough for showing tile convective speeds.

For the high values of Me, the difference in the two

results is even larger (_250 m/see). In one sense, this
difference is understandable because of tile dilatation

of structures. In another sense, it reflects the possi-

ble invalidity of the fornmla at high values of Me. In

view of this uncertainty, a calculation was made for

a composition with 30 percent H2 by mass in the fuel
stream and with the convective speed evaluated. In

this case, the density ratio (_5.1) was intended to

verify' the nature of the previous results. However,
even in this case, the difference between the speed of
the structure and the result from the formula seems

different by about 100 m/see. Perhaps the expected

accuracy of the fornmla can be no better than 3 to

4 percent. In the case of M,, = 0.76, the result for
uc is different by 7 percent, and the be.sic issue of

dilatation of structures affecting the result remains.

Hence, the use of Me, in a manner other than desig-

nating the condition, needs to be examined careflflly.

Figures 18 and 19 show the growth of the layer
computed from formulas described previously for u,

p, and H2 mass fraction. The thicknesses seem to

decrease after some growth. The fact that growth

decreases, is, by itself, not very surprising. Forced
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shearlayersshowsuchtrends(ref.19),but typically
at lessthan10percent.Thedipsin somequantities
in figures18and19,particularlytile latter,aremore
than this magnitude.Carefulexaminationshowed
that thesedipsarerelatedt.othewaythat nleanpro-
filesof variousquantitiesbehaveduring transition.
A snmllkink in the transitioningmea.nprofilecan
causethe presenceof a localgradientsmallerthan
in thedownstreamlocation.Thisdifferencecausesa
slightlylargergrowthrate. It maylikewiseturn out
downstremnthat. althoughthegrowthrateis larger,
thereis a lowerestimateof thegrowth.Thecombi-
nationof theseeventsproducescurvesof theshapes
seenin tigures18aim 19. Thegrowthratesthat
canbeextractedfromtheseplotsarediscussedsub-
sequently,alongwith resultsof the boundary-layer
profile.

Figures20to 26referto thestatisticsof fluctuat-
ing quantities.Figure20showstile variationof tile
rmsvalueof u in the field. The top portion shows

the variation along x at a t)artieular y station. Al-

though tile information contained in the top portion
is embedded ill the two-dimensional plot, it is ex-

plicitly brought out for a clearer appreciation. At
larger intensities of fluctuation, the fluctuations de-

crease over a part of the flow field before the atnplifi-
calion process takes control. The fluctuation profile

with y is not symmetric. A front is apparently cre-

ated (_50 nml) and is strengthened to a sharp peak
on the air side. The intensity of fluctuations seems

to seltle down to wdues of about 6 to 8 percent., ir-

respective of the initial fluctuation intensity. This is

one indication of the fact that the subsequent region
of t he flow is becoming independent of the initial dis-
tribution of the thu:tualion.

Figure 21 shows the variation of ,., fluctuations.
The instantaneous vahles of the v velocities seenl

very large, as large as 400 m/see, and tile,,' have a

large deviation on either si(le of zero. These veloci-

ties cause the flow to show up as large structures (m

a vortieity plot. The velocity-vector plots ill figures 8
and 10, where the vector is changing directions, are
a.lso reflective of these cross-stream velocities. The

changes in velocity directions in a supersonic flow re-

sult in shock waves, and these cause large pressure

variations ill the mixing layer. The mean velocity,

however, is not large by comparison (4-15 m/sec).
The peak rms value of a t, fluctuation is 8 percent,

which is comparat)le to the peak rnls value of u fluc-

tuations. This tbature is also reminiscent of flfi]y
turbulent flows. The fluctuation peaks toward the

air side (lower). The nlean and rms density arc pre-

sented on an .r-!l plot. Tile initial change of (tensity
froln 0.075 to 0. 175 kg/m 3 is evi(tent from the mean

density plot. Tile growth of the layer from zero thick-

ness is clearly visible. Tile rms value of the p profile

acquires a top-hat profile with a maxinmm of 34 per-
cent. The intensity aspect of tile density profile is

that the tot)-hat profile is acquired around tile tran-

sition region; broadening of the profile is the only
thing that happens farther downstream.

Tile mean and rms tenlperature variations are

shown in figure 23. The temperature profile ill tile

present calculation is, like a passive scalar and unlike

H2 mass fraction, affected by gas dynamics. There
are changes in the nlean temperature to the extent

of 25 to 30 K, a decrease fl'¢)m tile set initial value.

The extent of the change of tenlperature must be

understood in terms of energy exchange between

random energy and ordered energy. If the inviscid

global gas dynamics equation is used along streain
lines as follows:

V 2

opT + _ = Constant (14)

we can differentiate; then, AT ,-_ -VAV/cp, where
V is tile magnitude of the w_ct.or velocity. For typical

values (V ,_ 2250 m/see, AK _ 20 m/sec, and cp
1800 J/kg-K) AT _ 25 K, a value consistent with

tile change shown in the upper plot of figure 23. The
fluctuation of the rms value of T seems to stabilize

around 3 percent. This fluctuation is induced by the

fluid mechanical effects; there are no other energy-

exchange mechanisms. Figure 24 shows the plot of
ulean and rills values of H2 mass-fraction profiles;

rms nlass fraction is not normalized. Therefore, the
peak rms normalized by the mass fl'action of the

input fuel stream is about 0.2 percent. While tile plot

of tile mean profile looks similar to that of density
(ill a reversed manner), tile variation of the rms
H2 mass fraction seems quite different from that of

density. The curve looks like a Gaussian distribution.

The relationship between nlcan-density and nlasS-

fraction profiles is expected because density changes

are caused only by molecular weight changes induced
by H2 diffusion into tile airstrcanl.

Figure 25 shows the plot of vorticity and Reynolds

shear-stress fiehts. The Reynolds shear-stress pro-

file appears to be growing in size and magnitude at

100 mm (640 downstream). This trend shows that

tile transition process is incomplete. An attempt is
made t.o examine the validity of the Baldwin-Lomax

model for turtmlence. In this model, the shear stress

is represented t,y p'uq/ = Constant [pm(_5_f/_2,,)],
where _5_ is tile vorticity thickness, f_m is the nlean

vorticity, and prinles denote fluctuations about the
mean. The constant is calculated from tile actual
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vahlesof the left- andright-handtermsandplotted
in figure26. Thesecalculationsweremadefor both
101and151grid pointsto establishthe validityof
the results.As shownin the plot, the "constant"is
constantovera regionof the mixinglayerbut de-
parts from it significantly,particularlyin the peak
shear-stressarea.Thefactthat tile flowhasnot de-
velopedinto afully turbulentregimemaybepartly
responsiblefor this departure.If a magnitudemust
beusedfor tile constant,it would be about 0.015.

Darthermore, what is still not clear is what influence

the assumption of constancy has on the prediction of

growth rates of turbulent shear layers. These issues
have to wait for calculations of modeled equations.

Boundary-Layer Profile

Figure 27 shows the plot of the vortieity contours
for a range of initial disturbances from 0 to 3.68 per-

cent. The contour plots of vorticity appear thinner

than for the tanh case, because, unlike the tanh case,

vorticity changes signs across the shear layer. Note

the difference in the scales between the boundary-
layer and tanh cases.

The plots are very informative. With no im-
posed fluctuations, there seenls to be an onset of

instability at about 80 mm from the splitter plate,

and a few vortical structures have begun to develop.

The spacing of the vortical structures seems much

smaller than for the tanh case. Tile average spac-
ing for the boundary-laver case is about 6 mm and

23 mm for the tanh case. The spacing is normal-

ized with respect to initial-layer thickness (2 mm)

and is 3.0 for the boundary-layer case and 11.5

for tile tanh case. Tile observed spacing ratio is

about 2 (ref. 13). This is the first indication that the
results of the boundary-layer profile show more real-

istic results than the tanh profile. The point where

the first vortical structure gets developed, which may

be taken as indicative of the beginning of transition,
moves substantially to lower x values with tile impo-

sition of small, but realistic, disturbance levels. The

transition distances are 35, 27, 25, and 20 mm at

progressively increasing disturbance levels.

The single large jump in the transition distance

occurs from 80 mm to 35 mm for a change ill dis-
turbanee level from 0 to 0.115 percent. Subse-

quent increases in disturbance level seem to have

progressively less influence. The transition dis-

tance, normalized by" momentum thickness, is 345
for a 0.115-percent disturbance level and 265 for a

0.23-percent disturbance level. The experimentally

observed transition distance is 165 to 3000 (table 1).

Transition distances up to 7000 are quoted for various

cases in reference 13. The transition Reynolds num-

ber can be computed based on R T = Pavg'ttc:rT/#avg.

When pavg = 0.125 kg/m 3, uc = 2150 m/see, and

my = 0.04 in, R T is 0.18 x 106 . The vahle of uc used

here is from the standard equation and is not tile
value obtained from the calculations. Tile difference

between the two values is no more than 5 percent,,

and this difference is quite small for the estimation

of R. The transition RT given in reference 9 is
0.2 × 106 4- 0.03 x 106. The results from reference 18

were quoted previously to be between 0.36 x 106 and
0.53 × 10(_. These values are based on free-stream

velocity. If they are based on the convective speed
of the structures, which, in this case, is half tile

free-stream speed, the transition Reynolds number
is 0.18 x 106 to 0.26 x 106. Again, tim comparison

seems good between the experimental values and the

predictions. Thus, the present results with boundary
layer as tile initial profile seem to predict realistic
transitional features at realistic distm'bance levels.

The transition behavior is more vividly depicted

on time-spectra plots shown in figure 28 for three

:r and y stations. The spectra are shown for both
0- and 0.115-percent disturbance-level cases. The

upper plot shows the time spectra at :r = 0. The

disturbance seen in this figure at..c = 0 is consistent

with the description of initial-disturbance structure
discussed previously. The peak disturbance is about

1 to 2 m/sec in the central zone. At :r = 50 rain (town-

stream, the anlplitudes are 10 to 20 m/see and are

50 to 90 m/see at :r = 100 mm downstream. The

mean velocity has also increased from near zero

to as high as 1500 m/sec during this transition.

The nature of the plot at the downstream stations

shows that most other frequencies, both subharnlonic
and the higher harmonics, arc excited perhaps more

strongly than indicated with the tanh profiles. The

plots, with respect to the ease involving no distur-
bances, show that tile flow has picked up noise that

was generated numerically. Interestingl3; tile distur-

bance is selectively amplified, and peak growth oc-

curs at about 150 kHz, which implies that tile shear
layer is sensitive to disturbances at this frequency.

This result can be expressed in terms of a nondilnen-

sional quantity, St = Of�no, where f is the frequency.

For 0 = 0.102 mm and uc = 2150 m/see, St = 0.007.
Perhaps St = 0.007 as a criterion for excitation is

valid over a much larger range of parameters. In

reference 24, a quantity called "preferred mode" is

indicated in jets and nlixing layers, and the Strouhal
number is between 0.002 and 0.012. It is stated in ref-

erence 24 that "mixing layers can be manipulated ef-

fectively with very low forcing levels -0.01 to 0.1 per-

cent of the average velocity -- provided tile excitation
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isappliedat theproperfrequency."Thiscommentis
entirely consistentwith the observationsof the
presentcomputations.

Figure29showstheplotsof pressureversusz for
three successive tilnes. The extent of the pressure

fluctuations is the same as in the tanh case, but,

consistent with the vorticity plot, the profile has

many more waves within ttle same range of x. The

convective speed, conlputed from the movement of

the pressure waves with time, is presented in table 4.
As was also indicated previously, this value compares
well with that from tile formula.

Figure 30 shows the plot of the mean u pro-

files and the minimum u velocity versus x. A

plot of ininimum _L with a nondimensional x de-

fined by xm,t = x/(ORo) is presented in reference 11.

The Reynolds number uses the average of the unit

Reynolds number on both sides. Tile plot shows that
at. about x,m = 1, the asyinptotic value is reached.

Substituting the values of various quantities and ob-

taining x, a value of x that corresponds to x,m = 1,

yields x = 45.5 nlm. The upper plot of figure 30
shows that the asymptotic value of u seems to have
been reached at x = 40 to 50 mm.

Figure 31 shows the plot of the rms value of u
over the field. Tile rms value of u increases from

a relatively low value of 0.1 percent, builds up to

around 10 percent, and then seems to saturate at

this level throughout the field after the transition

process starts. A careful exainination shows that
the rms value of u versus y seems to haw_ attained

similarity around 90 him (9000). The rms value

of v seems to peak and decay downstream of 6000

(fig. 32). The mean v is near zero throughout the
field. The instantaneous v goes up to =kl00 m/see.

Tile mean and rms values of density are shown in

figure 33. Unlike the tanh case, the rms profiles do

not seem to have the top-hat shape, and the variation

with y is asymmetric. The peak rms goes tip to
20 percent, and the mean-density profile appears

to be approaching similarity. The temperature and

tt,2 mass-fraction profiles are presented in figures 34

and 35. Tile mean profiles are siinilar to those
obtained for the tanh case. The rills profile shapes

are slightly different, but the features-namely, the

peaking of rms intensity and subsequent decay in the

axial direction and magnitudes are about tile same
as for the tanh case.

The growth data for tile boundary layer are pre-

sented in figure 36. As explained previously, the

growth was obtained by using the u profile. The
results for most fluctuations show a region of small

decay before tile growth is established; this decay,

may be due to a coupling between the inflow dis-

turbance structure and the flow instability. For large

fluctuations, the growth rate is approximately linear.
In the other cases, a growth rate can be derived in

the range where there is no decay or constancy. Sur-

prisingly, the slope obtained for these cases is nearly

the same. These growth-rate data are presented in
table 5. The results obtained for other tanh eases are

also shown in this table. The growth-rate trends for
various fluctuation intensities are not the same. In

all cases, the growth rates were estimated from the

slopes in the latter part of the x range. The linear

growth rate for the lower intensity fluctuations may

not have been achieved. The growth rates based on

H2 mass fraction or density are the same for all the
fluctuation intensities. The data for ?,'It = 0.76 were

derived from similar considerations. Again, there are
variations. An estimate of the mean value of the

growth rate was obtained and is included in thc ta-

ble. Further, the growth rate is divided by that for

the incompressible case (eq. (1)) to obtain the com-
pressibility effects as in the results of reference 13.

These data are presented in figure 37 with experi-
mental results. While there is significant variation of

the numerically obtained result, the reduction of the

growth rate with hi,, is unmistakable. It may well be

that if the simulations are carried out for much larger
values of xm/O, the growth-rate data would lead to

a more consistent picture.

Figure 38 shows the terms of the conservation
equations of u, v, and energy. The only dominant

terms are tile unsteady and convective terms. The

pressure-gradient terms are about 25 percent of the

convective terms. The viscous terms seem insignifi-
cant on the scale shown, but the flow is not necessar-

ily inviscid. The flow is affected by fluctuations not

evident in tile plot of instantaneous quantities. These
fluctuations lead to a stress like tile viscous stress

(the Reynolds stress), which is known to be impor-

tant. To determine their importance, the terms must

be averaged and the relative orders of magnitude
must be examined. This determination shows that

the Reynolds stress terms constitute up to 30 per-

cent of the convective terms. Figure 39 confirms the

validity of these results in terms of the variation of

pressure; variation of pressure affects Reynolds num-

ber. Changing the Reynolds number by a factor of 4

causes little change to the w_rtical structures and the
mean growth rates. Data for incompressible shear

layers for local Reynolds number with fixed x (in

the case considered 0.45 m downstream), in which
a change in Reynolds number from 4.3 x 104 to

6.7 x 104 shows a visible change in growth rate, are

presented in reference 10. Since the full experimental
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detailsof this workareunpublished,the resolution
of the issuesinvolvedin theexperimentsmustawait
discussionat afuturetime.

Conclusions

Thisstudyisanexplorationof thedirectnumer-
ical simulationof high-speedmixing layers. After
establishingthevalidityoftheapproachto resolving
the mixinglayerand the methodsof exploringthe
structureof themixinglayer,the issuesconcerning
the effectsof free-streamdisturbanceintensity,the
natureof theprofiles,andtheroleof Reynoldsnum-
berarestudied.Thefollowingconclusionsaredrawn
fromthepresentstudy:

1. The calculationsshowthat the profileof the
hyperbolictangentcallsfor unnaturallylargedistur-
bancelevels(_3 to 4 percent)to initiate transition
in the flow. Boundary-layerprofiles,on the other
hand,showtransitionReynoldsnumbersof about
0.18x 106;thesenumbersareconsistentwith theex-
perimentalresultsat disturbancelevelsof theorder
of0.1percent.ThetransitionReynoldsnumberdoes
not stronglydependondisturbanceintensityovera
rangeup to 0.2percent.

2. Theasymptoticturbulenceintensitiesattained
intheshearlayerfortheboundary-layercase(10per-
cent) are larger than for the hyperbolic-tangent
(tanh)profile(6percent),andthesametrendis true
forReynoldsnumberstress.

3. ConvectiveMachnumbersderivedfrom the
pressureversusstreamwisecoordinate plots show sig-

nificant differences from those computed with stan-

dard formulas to a large extent at high convective
Mach numbers. These differences are related to the

significant changes in the shape of the vortical struc-
tures in the flow field with time. This feature makes

the idea of a convective Mach number less represen-

tative in distinguishing flows of different compress-

ibility at high convective Mach numbers.

4. The estimates of the growth rates from the

latter region in growth versus streamwise coordi-

nate plots are straightforward in most cases, and the

growth rates that are normalized with incompress-

ible growth rates decrease with the convective Mach
number. This decrease is consistent with known ex-

perimental results. The spread in the results is prob-

ably the result of the limited axial extent of the field

explored.

5. Reynolds number has negligible effects on the

growth and structure of the mixing layer for the range
of Reynolds number considered. This result is not

surprising in view of the dominance of inviscid effects
over viscous effects.

6. The utility of the direct simulation approach in

examining turbulence models is briefly demonstrated
on the Baldwin-Lomax model. The constant in the

relationship between the Reynolds shear stress and

the mean vorticity varies significantly over the region.
For a subset of the region, the constant remains
about the same from a value of 0.015. These kinds

of studies can be performed with the data base that

is archived for this purpose.

The relative utility of tanh and boundary-layer

profiles in studies of mixing layers needs to be con-
sidered. The tanh profile has the obvious advantage

of leading to analytical solutions to stability prob-
lems that are vital for making generalizations. The

boundary-layer profile, which is closer to reality in

experiments, has the disadvantage of not being close
to the solution of the steady probleml therefore, it
is not amenable to classical stability treatment. If

one intends to capture the transition processes and

compare them with experiments, there is no alterna-
tive to the boundary-layer profile. Thus, the tanh

and boundary-layer profiles both have their regions

of importance in the study of mixing layers.

NASA Langley Research Center
Hampton, VA 23665-5225
April 1, 1992
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Appendix

Nmnerical Algorithm

For supersonic flows, no other algorithm has been

more widely used than the method discussed in ref-
erenec 25. Over the last 20 years, this method has

been repeatedly compared with other codes and with

cxt)erinlental data. Recent efforts have been made to

improve the accuracy of the method by increasing the
spatial truncation error to fourth order and thus re-

(tucing some of the dispersive errors of the method.

A fi)urth-order variant of the original MacCormaek

algorithm (a five-point linear stencil) ha.s heen ad-
dressed in references 22 and 26. These references

show that increased resoluti(m is obtained for a broad

class of problems with the fourth-order inethod.

In the last decade, a wealth of upwind algorithms
have been developed. These methods incorporate nu-

merical stencils which align with the direction that

information is propagating in the flow. This prop-

agation is usually ac(:()mplished by de(:omposing the
governing equations into a form ill which each charac-

teristic wave can t)e difference(t in an upwind nmnner.
Numerous implementations of these methods have

shown a great deal of success in resolving supersonic

problems of practical interest. In spite of the success

of upwind algorithms h)r the Euler equations, difficul-
ties exist for their use ill supersonic chemically react-

ing flow prot)lems. Specifically. the (:tmmistry system

is extremely (tiffieult to formulate along characteristic

(tir(x'tious, an(t inany ()f the ut)wind methods are not

easily generalizabh' with chenfically reacting flows.

The basic characteristics of central- and upwind-
different(, algorittuns, as well as the beneticial at-

t.rilmt(,s of higher order algorithms, can be observed

in a two-dimensional too<tel prol)lenl (referred to as

th(' color problem) designed to demonstrate muneri-

cal (liifusion and <tispersion. (See ref. 27.) Different
mmmrical algorithms are compared with an exact, so-
lution an<t with each ()tiler to determine the eharac-

t(,risti(' of each. The test proMcm used in this study
is the two-dimensional advection of a scalar field de-

fined t) 3' the equation

0(uv) 0(vq,)
-- + -- + - () (15)
Ot &r 0!I

wit h

y, 0) = %(x, y) (16)

and with suitat)le 1)oundary conditions. Tile velocity
vector was chosen to be a solid-body rotation defined

by

u = ],
(17)fV = _:l:

with f_ = 27r, so that one complete revolution of the
flow occurred ill one unit of time. The domain that

was used corresponded to the domain -1 < x, y < 1.

Dirichlet or first-order extrapolations were used for

the boundary conditions for flows entering or exiting

tile domain. The boundaries were located suitably
far from the regions of interest so that the lower or-

der treatment did not affect the quality of the results.

The grid used 100 by 100 uniformly spaced points on

which to solve the governing finite-difference equa-
tions. All calculations were integrated in time un-

til the initial distribution had rotated exactly once.

Tile distribution was then compared with the initial
distribution by using two error norms: the L:,c or

maxinmm error norm, and tile L 2 norm.

Figure 40 shows the initial distril)ution on the

grid used in this study. The initial value of _P was

chosen to be 1 in the interior of the "L-shaped" body
and 0 elsewhere. This distrilmtion is (tiscontinuous

and is a serious test of the dispersive properties of all

algorithm. Reference 28 shows that this discontinuity
seriously degrades the accuracy of the solutions and

that the error (L._c or L2) (tecays no bettc'r than first.

order with increasing spatial resolution, regardless of

the spatial accuracy. With higher order algorithms,
the error is confined to a narrower region about the

discontinuity and thus contril)utes to a slightly t)etter
L.) norm. This distribution was chosen to more

closely approximate the discontinuous behavior of

tile Euler equations.

Figures 41 and 42 show the results obtained after
one complete revolution of the initial distritmtion
with the standard MacCormack and fourth-order

Gottlieb-Turkel algorittuns. Contours ranging from

0 to 1 are plotted ill steps of 0.05 (21 contour levels).
The sharp distinction between regions initially at a

value of qJ = 1 and the surrounding regions at qJ = 0
is no longer apparent. The dispersive nature of the

algorittml has distorted the solution dramatically.
The regions inside tile innermost contour level are

at values greater than 1 and are numerical in nature.

The convection of the initial discontinuity is much
better accomplished with the fourth-order method.

The outer boundary of the initial distribution is
nearly replicated with the fourth-order schemes. Tile

contour levels ill the interior regions of the solution,

where k0 < 1, indicate that the numerical dispersion
is present. Thus, although the fourth-order schemes

track the discontinuity with much greater accuracy,
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they still exhibit significantoverand undershoots
nearthediscontinuity.

Figure43showsthe sametestproblemwith the
third upwind-biasedalgorithm. In all thesecal-
culations,the stencilwasorientedin the upwind
direction,and wasthereforevariedin eachof the
fourquadrantsof thetestproblem.Thethird-order
upwind-biasedalgorithmproducesa cleansolution
afteronecompleterotation.Thelocationof thedis-
continuityis somewhatdiffusedat thecornersrela-
tiveto thefourth-ordercentral-differencealgorithms,
but the tw,o-dimensionaldispersionpresent,in tile
central-differencealgorithmsiseliminated.

Whenthequantitativefeaturesof theupwindal-
gorithmsarecomparedwiththecentral-differenceal-
gorithms,it isapparentthat tile fourth-orderscheme
tracksthediscontinuitiesmoreaccuratelythandoes
the upwind algorithm,but it. has far more two-
dimensionalovershootsandundershootsthantheup-
wind algorithm. Exceptfor the diffusedcornersof
the discontinuity,the third-orderupwindalgorithm
providesa veryaccuratesolution. Tile algorithms
of at leastthird-orderaccuracyprovidesignificant
improvementoverthesecond-ordercentral-difference
algorithms.

To quantify some of these observations, the error

after one complete revolution of the initial distribu-

tion was calculated. Both the Lx norm (shown by'
the maximum or minimum of the solution over the

entire domain) and the L2 norm are presented. Ta-
ble A1 shows all the algorithms, the maximum and

minimum values of _, the L2 norm, and tile CFL

at which the calculations were performed. The Lmax

and Lmi n norms for the upwind case are reduced by
the higher order algorithms, especially for the upwind

algorithms. Also, the L2 norm for the third-order

upwind and the fourth-order schemes is nearly the
same. These observations are characteristic of the

comparison between upwind and centered schemes.

With higher order schemes, the efficiency and robust-

ness achieved in solving realistic problems decrease.

The third-order upwind-difference and fourth-order
central-difference schemes represent truncation lev-

els that compromise the extremes of accuracy versus

efficiency.

The SPARK2D code used in the present study

incorporates a combination of upwind- and central-
difference schemes. The numerical simulation of tile

supersonic mixing layer is ideally suited for the use
of upwind-biased algorithms in the streamwise direc-

tion. Because the flow is supersonic, all the eigenval-

ues are oriented in the same direction. The equations

can be differenced in an upwind manner without a

characteristic decomposition. A third-order upwind-

biased algorithm has been chosen as tile numerical
algorit.hnl for the streamwise direction. It shows low

phase errors and acceptable levels of numerical dissi-

pat.ion, with extremely good characteristics for cap-

turing discontimfity.

Table AI. Error Norms From I)itferenl Schemes

_ch(?Ill(?

MacCormack

(ref. 25)

Gott lieb-Tllrkel

(ref. 22)

Third upwi/M

Order Lmax Lmin

At 2,Ax 2,Ay 2 1.429 -0.378

At 2. A:,': '1, A!/1 .(.3;_7 -- .2_'_f)

At::;,/A:r 3, A!I3 1.148 -. 108

L2

7.76 x ll) 4

G, 19

5.29

('FL

1

2/3

Extremely strong gradients exist, in tile cross-

streain direction. A higher order nunmrical algorithnl

is ideally suited for this direction. Since the flow in
this direction is always subsonic, central-difference

methods are ideally suited. The fourth-order method

of reference 22 is used in the cross-stream (an(t nor-

mal for the three-(timensional case) direction. The

nunlerical algorithm in two spatial dimensions can I)e

described by the Inodel equation U_ +/_r + G._ = 0
a,s

Ui j ( r'_ A t",; - 6a:-_ (2_;+_..; + :_E.j - s£-_,.i + F, _,j)

At

6A_/ (-C_.j÷_ + 8Gi4+_ - 7G_.;)

1 It," atc;!'+ = 2 ' + "%': - 6A._-;(2Y,+_,j + 3Y_.j

-6F_-l,) + F, 2,j)

at - sG,j_, + O,j ,,)]
6Ag

(18)

The fourth-order Gottlieb-Turkel scheme is stable for

CFL _< _ and thus liInits the maxinmm allowable
CFL. The Gottlieb-Turkel scheme is not applicable at

tile grid point next to the boundary and must rely on
a standard MacCormack difference fornmla at that

point. Similarly, the upwind scheme is not defined

at the first and second axial grid points and relies on

a first-order upwind scheme at that point. Explicit.

mmmrical damping, which is often added to codes

for engineering calculations, was ,lot used here for
reasons of accuracy. The only numerical dissipation

present was that generated by the algorithm itself.
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Code Validation

Thefirst stepin validatingthecodewasto deter-
mineif thenumericalmethodsusedin theSPARK2D
code are capable of resolving the linear growth of

the two-dimensional mixing layer. It is essential

that all the aspects of the linear regime of the

mixing layer be well resolved for grids comparable

to those used in this study before addressing the
far more difficult nonlinear problem of vortex roll-

up and chemical reaction. Linear stability theory

prcdicts that the temporally developing compress-

ible two-dimensional mixing layer (air into air) is

unstable for a velocity profile that is initially speci-
fied as a hyperbolic-tangent axial-velocity distribu-

tion. In the initial stages of the instability (the

linear regime), the growth of the unstable modes is

exponential. For these calculations, accurate eigen-

modes are provided from a spectral linear stability
code developed in reference 3. From these eigen-

modes, nondimensional growth rates and characteris-

tic frequencies were calculated. This nondimensional
growth rate provided a reliable measurc of the accu-

racy of tile finite-difference algorithm being tested.

The temporal growth of the two-dimensional mix-

ing layer is simulated by assuming the flow to be pe-

riodic in the streamwise direction. The period corre-

spon{ts to a wavelength of x = 0.6283 mm (thc mode

that grows most rapidly, as determined from the lin-
ear analysis). The initial velocity distribution is spec-

ified as U(x,,_,0) = _tanh (_), V(x,y,0) = 0.0,
T(x,y,O) = 293 K, and P(x,y,O) = 1 atm. Source
terms were added to the Navier-Stokes equations, so

that the momentum and energy equations would pre-

serve the free stream. The resulting Reynolds num-
ber of the flow is 0.187 x 103, based on the layer thick-

ness, where U_c = 100 m/sec. The Mach number is
0.30. The width of the half-layer D is 2.5 x 10 -2 ram,
and the half-width of the domain is 100 times the

layer thickness. The grid in the streamwise direction

is uniform, while the grid in the cross-stream direc-
tion is highly stretched. The transformation of the

grid ensures that about half of all the y grid points

arc located within the initial mixing-layer width.

For these studies, the unstable modes in the layer

were allowed to grow from the numerical instabilities

produced by the machine round-off errors. Expo-
nential growth of these modes was seen in all cases

after an initial transient period. The "linear" regime

wa,s characterized by the growth period, during which

tile product of perturbation quantities was still neg-

ligible. For these tests, that period was arbitrarily
between 2.5 x 10 -5 and 2.75 x 10 -8 see and corre-

sponded to disturbance amplitudes three to five or-

{ters of magnitude larger than machine round-off er-

rors. A grid convergence history of the numerical

method was used to determine its formal accuracy

and to ascertain the grids necessary to resolve this
fundamental phenomenon.

The most unstable mode in this problem grows

at an exponential rate, with an exponent determined

from linear stability theory to be 0.140000 in non-
dimensional units. This rate was used as the "ex-

act" growth rate for these conditions. A series of four

grids were then defined, each with a grid density that

was a constant multiple of the previous grid. Three

algorithms MacCormack (ref. 25) at CFL = 1.0,
Gottlieb-Turkel (ref. 22) at CFL = 0.5, and DCPS

(ref. 27) at CFL = 0.5 were then run on identi-

cal grids, and tile nondimensional amplification rate

was determined from an integration of the energy
spectrum. (The integral of the fundamental mode
over the entire domain was monitored in time. The

change, with respect to time, yields the amplification
rate.)

In figure 44, the amplification rates of the three

methods are plotted against to show quar-

tic accuracy. The symbols N and Nmax are the num-

ber of grid points and the maximum number of grid

points used in tile study, respectively. Here, the
fourth-order spatial accuracy of the spatial derivative

from eactr method is indicated by, the linear conver-

gence of tile solution to the predetermined amplifica-
tion rate. Tile Gottlieb-Turkel scheme and the DCPS

algorithm both converge with fourth-order accuracy.
It is apparent from these results that, even for coarse

grids (10 grid points per wavelength), the fundamen-

tal features of the linear growth of the mixing layer
are resolved. There should be no question that the

grids used in these studies are sufficient to resolve the

linear regime of the two-dimensional mixing layer.
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Table 1. Data and Results of Previous Investigations

Reference 11 Reference 11

Quantity (case 1) (case 2) Reference 13 Reference 16

all/]tI2

U1/_&, ,n/see

(_1/_2, rain

01/02, nun
Pl/P2, Pa

rl/r2, Z
ill,,

2.s/2.15
655/580

2.0/2.0
0.123/0.152
2089/2294

130/174
0.325

2.7/1.67

630/515

1.6/1.4

0.12/0.125

2895/3673
134/206
0.515

3.1/1.7 and others
Ratio = 1.4

0.44/0.36

0.042/0.069
NA

NA

0.6

1.95/1.33

50o/38o
2.o/2.3
NA

Nearly same

169/220
0.31

Gases Air/air Air/air N2/N2 and other gases Air/air
Comments u profile takes more

than 80 mm to go

near equilibrium;
Transition _ 1650;

dominant frequency
93 kHz

Growth rate by pitot

surveys; Transition
40 to 60 mm

u profile takes more

than 80 mm to go

near equilibrium;
Transition _ 3000;

dominant frequency
130 kHz

Growth rates

measured

as O.Oll

Table 2. Inflow Parameters

IT = 2000 K; p = 0.101325 MPa; 0 (tanh case) = 1.54 ram; 0 (boundary-layer case) = 0.102 mm]

Composition Parameter Case 1 Case 2

Fuel:

0.1H2 + 0.9N2
p, kg/m a

Oxidant:

0.23202 + 0.768N2

/Z_ nl/sec

eU

"y

a, m/sec
_ nlnl

#, kg/m-sec

p, kg/m a
'_ ln/sec

M

a, nl/sec

_ Innl

#, kg/rn-sec

0.075
2670.0
2.0

1.3133

1336.0

1.0

5.5 x 10 -5

0.175

1814.0
2.1

1.296

864.3

1.0

6.2 x 10 -5

0.075
2670.0
2.0

1.3133

1336.0

1.0

5.5 x 10 -5

0.175
4330.0
5.25

1.296

864.3

1.0

6.2 x 10 -5

uc, m/sec 2150.0 3670.0
Mc 0.385 0.76
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Table3. NondimensionalParameters

Parameter Case1 Case2
x,_/O

Temperature ratio (fuel/oxidant)

Pressure ratio (fuel/oxidant)

Density ratio (fuel/oxidant)
Velocity ratio (fuel/oxidant)

Momentum ratio (fuel/oxidant)

R& fuel

Rb_air

RO = paucO/#, tanh

RO = paUcO/#, b.1.

64 (100 mm, tanh)

100 (150 ram, tanh)

130 (200 ram, tanh)

1000 (100 ram, b.1.)
1500 (150 ram, b.1.)

1.0

1.0

0.429

1.45
0.90

3 640

5 120

5518
360

64 (100 mm, tanh)

100 (150 ram, tanh)
130 (200 mm, tanh)

1000 (100 mm, b.1.)

1500 (150 ram, b.l.)
1.0

1.0

0.429
0.616

0.163

3 640

12220

11 100

630

Table 4. Convective Speeds

0.38 tanh

0.38, b.l.

0.76, tanh
0.38, tanh

Composition

0.1H2 + 0.9N2

0.1H2 + 0.9N2

0.1H2 + 0.9N2

0.3H2 + 0.7N2

"t/r:, in/see

from formula

2150

2150
3670

2543

Uc, nl/seq fronl

vortical structures

2260 _ 50
2190 ± 30

3400 ± 150

2648 • 50

Table 5. Growth Rates

Mc

0.38,
tanh

0.76,
tanh

0.38,
b.1.

Fluctuation,

percent

3.68

1.84

.92

3.68

1.84

.92

3.68

.92

.46

.115

0.03 _ 0.003
.05 ± 0.002

.06 • 0.020

0.075 ± 0.005

.04 ± 0.003

.04 ± 0.002

0.055 ± 0.002

.055 ± 0.005

.055 ± 0.005

.055 ± 0.005

l !
5tt2,6p

0.05 ± 0.002

.05 ± 0.002

.05 ± 0.002

0.07 i 0.005

.04±0.003.04 ± 0.005

Mean 6'

0.05

0.04

0.055

6'/6'o

0.77 to 0.83

0.45 to 0.50
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3.85 percent fluctuation and Mc = 0.38. Grid: 201 by 101; domain: 100 mm by 30 mm.
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Figure40. Initial distributionfor "color"problem,superimposedongrid usedin study.
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Figure 41. Rotation of initial distribution with MacCormack (ref. 25) algorithm. Accuracy of method is
second-order in time and space.
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Figure 42. Rotation of initial distribution with Gottlieb-Turkel (ref. 22) algorithm. Accuracy of method is

second-order in time and fourth-order in space.
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Figure 43. Rotation of initial distribution with third-order, upwind-biased algorithm. Accuracy of method is

second-order in time and third-order in space.
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